
 Assessment Result

 tanyachisepo04@gmail.com

Student Remarks

Assessment Summary

100%

11 h, 44 m, 40 s Active

Time

Solutions Summary

Challenge Score Active Time

 #1: Inclusive Styleguide: Part 1 100% 3 h, 19 m, 14 s

 #2: Inclusive Styleguide: Part 2 100% 2 h, 48 m, 3 s

 #3: Inclusive Styleguide: Part 3 100% 5 h, 19 m, 9 s

 #4: Inclusive Styleguide: Part 4 100% 18 m, 14 s

 Assessment Code Solution

 Scoring

100%

Timing

3 h, 19 m, 14 s Active Time

Tanyaradzwa Chisepo
Code2040: Required Assessment [2023] Results

My challenges 1 and 2 are still flagging as incomplete even though I passed all the test cases, I am not sure why

Tanyaradzwa Chisepo opened this assessment on Saturday, July 9, 2022 12:31 AM

Tanyaradzwa Chisepo started this assessment on Saturday, July 9, 2022 1:39 AM

Tanyaradzwa Chisepo submitted this assessment after 30 minutes on Saturday, July

9, 2022 2:09 AM

This student spent 11 hours and 44 minutes active in the browser working on the

assessment

#1: Inclusive Styleguide: Part 1

5 / 5 Tests (7 Attempts) 775 ms Run Time

Instructions

At Code2040 we work with many companies who are conciously trying to move toward using more inclusive language. In

our opinion, there is no more important place to start than the language we use in our codebases and to describe our

code. We believe this is a crucial step toward increasing diversity and inclusion in technical spaces. This multipart

challenge will be to build a basic delinter built around inclusive language guidelines.

As an example, here (https://developers.google.com/style/inclusive-documentation) is what google's developer

documentation style guide has to say about inclusive language, and here

(https://mobile.twitter.com/TwitterEng/status/1278733305190342656) is a post from Twitter with some of their internal

language guidelines, which we have drawn on as an example for this exercise.

For this task imagine, you have received the following JSON from your team with some style guidelines:

GUIDELINES = [

 {

 "key": "you_guys",

 "search_terms": ["you guys", "u guys", "uu guys"],

 "suggestions": ["you", "you all", "y'all"]

 },

 {

 "key": "man_hours",

 "search_terms": ["man hours", "woman hours"],

 "suggestions": ["person hours", "engineer hours"]

 },

 {

 "key": "grandfathered",

 "search_terms": ["grandfathered"],

 "suggestions": ["legacy status"]

 },

 {

 "key": "dummy_value",

 "search_terms": ["dummy value"],

 "suggestions": ["placeholder value", "sample value"]

 },

 {

 "key": "sanity_check",

 "search_terms": ["sanity check"],

 "suggestions": ["quick check", "confidence check", "coherence check"]

 }

]

Background

Part 1: Suggestions

https://developers.google.com/style/inclusive-documentation
https://mobile.twitter.com/TwitterEng/status/1278733305190342656

Solution Code Python

Your first task is to write a method that takes a guideline key and returns an array containing the relevant suggestions.

Tips

For the purposes of this task, here's what you need to support:

The array of suggestions should be in the same order as they are in the json

It may be useful to include a standard library to parse the JSON, but it is not necessary to do so

If a the function is called with a key that does not exist in the JSON, return an empty array

{

"method": "suggestions",

"args": {"key": {"type": "String", "desc": "the key for the guideline"}},

"returns": {"type": "Array", "desc": "The suggestions for the guideline"},

"examples": [

 {"args": ["sanity_check"], "returns": ["quick check", "confidence check", "coherence

check"]},

 {"args": ["grandfathered"], "returns": ["legacy status"]},

 {"args": ["you_guys"], "returns": ["you", "you all", "y'all"]},

 {"args": ["not_a_key"], "returns": []}

]

}

Speci�cation

 1

 2

GUIDELINES = [3

 { 4

 "key": "you_guys", 5

 "search_terms": ["you guys", "u guys", "uu guys"], 6

 "suggestions": ["you", "you all", "y'all"] 7

 }, 8

 { 9

 "key": "man_hours", 10

 "search_terms": ["man hours", "woman hours"], 11

 "suggestions": ["person hours", "engineer hours"] 12

 }, 13

 { 14

 "key": "grandfathered", 15

 "search_terms": ["grandfathered"], 16

 "suggestions": ["legacy status"] 17

 }, 18

 { 19

 "key": "dummy_value", 20

 "search_terms": ["dummy value"], 21

Candidate's Tests

 "suggestions": ["placeholder value", "sample value"] 22

 }, 23

 { 24

 "key": "sanity_check", 25

 "search_terms": ["sanity check"], 26

 "suggestions": ["quick check", "confidence check", "coherence check"] 27

 } 28

] 29

 30

 31

def suggestions(key): 32

 33

 for dictionary in GUIDELINES: 34

 #check to see if given key matches with any of the keys in the dictionary 35

 if key == dictionary['key']: 36

 return (dictionary['suggestions']) 37

 return [] 38

 39

 40

 41

 42

 43

import unittest 1

from solution import suggestions 2

class Test(unittest.TestCase): 3

 def test_suggestions_should_return_an_array_of_suggestions(self): 4

 self.assertEqual(suggestions("you_guys"), ["you", "you all", "y'all"]), 5

 self.assertEqual(suggestions("not_key"), []) 6

 7

 Assessment Code Solution

 Scoring

100%

3 / 3 Tests (12 Attempts)

Timing

2 h, 48 m, 3 s Active Time

718 ms Run Time

Instructions

#2: Inclusive Styleguide: Part 2

At Code2040 we work with many companies who are conciously trying to move toward using more inclusive language. In

our opinion, there is no more important place to start than the language we use in our codebases and to describe our

code. We believe this is a crucial step toward increasing diversity and inclusion in technical spaces. This multipart

challenge will be to build a basic delinter built around inclusive language guidelines.

As an example, here (https://developers.google.com/style/inclusive-documentation) is what google's developer

documentation style guide has to say about inclusive language, and here

(https://mobile.twitter.com/TwitterEng/status/1278733305190342656) is a post from Twitter with some of their internal

language guidelines, which we have drawn on as an example for this exercise.

For this task imagine, you have received the following JSON from your team with some style guidelines:

GUIDELINES = [

 {

 "key": "you_guys",

 "search_terms": ["you guys", "u guys", "uu guys"],

 "suggestions": ["you", "you all", "y'all"]

 },

 {

 "key": "man_hours",

 "search_terms": ["man hours", "woman hours"],

 "suggestions": ["person hours", "engineer hours"]

 },

 {

 "key": "grandfathered",

 "search_terms": ["grandfathered"],

 "suggestions": ["legacy status"]

 },

 {

 "key": "dummy_value",

 "search_terms": ["dummy value"],

 "suggestions": ["placeholder value", "sample value"]

 },

 {

Background

https://developers.google.com/style/inclusive-documentation
https://mobile.twitter.com/TwitterEng/status/1278733305190342656

 "key": "sanity_check",

 "search_terms": ["sanity check"],

 "suggestions": ["quick check", "confidence check", "coherence check"]

 }

]

Your second task is to write a function that generates a notice alerting the user that a match has been found and

suggesting how they might improve their language.

Tips

Assume that a string has been run through the delinter and a substring has been found that matches one of the non-

inclusive language examples in the json. For the purposes of this task, here's what you need to support:

Follow the pattern for the notice in the specification examples

The match and each suggestion should each be put within single quotes

If there is more than one suggestion connect them with the word or

The reference link uses www.inclusive-styleguide.com as the base url

The reference link path is the key converted from snake_case to dash-case

Threre is a single space between the sentences

{

"method": "notice",

"args": {

"key": {"type": "String", "desc": "the key for the guideline"}, "index": {"type": "Integer",

"desc": "the index at which the matching non-inclusive substring begins"}, "match": {"type":

"String", "desc": "the matching non-inclusive substring"}

 },

"returns": {"type": "String", "desc": "The notice generated by the delinter about the non-

inclusive language"},

"examples": [

 {"args": ["sanity_check", 4, "sanity check"], "returns": "<4> Consider replacing 'sanity

check' with 'quick check' or 'confidence check' or 'coherence check'. Reference

https://www.inclusive-styleguide.com/sanity-check for details."},

 {"args": ["man_hours", 8, "woman hours"], "returns": "<8> Consider replacing 'woman hours'

with 'person hours' or 'engineer hours'. Reference https://www.inclusive-styleguide.com/man-

hours for details."},

 {"args": ["grandfathered", 2, "grandfathered"], "returns": "<2> Consider replacing

'grandfathered' with 'legacy status'. Reference https://www.inclusive-

styleguide.com/grandfathered for details."}

]

}

Part 2: A Notice

Speci�cation

Solution Code Python

 1

GUIDELINES = [2

 { 3

 "key": "you_guys", 4

 "search_terms": ["you guys", "u guys", "uu guys"], 5

 "suggestions": ["you", "you all", "y'all"] 6

 }, 7

 { 8

 "key": "man_hours", 9

 "search_terms": ["man hours", "woman hours"], 10

 "suggestions": ["person hours", "engineer hours"] 11

 }, 12

 { 13

 "key": "grandfathered", 14

 "search_terms": ["grandfathered"], 15

 "suggestions": ["legacy status"] 16

 }, 17

 { 18

 "key": "dummy_value", 19

 "search_terms": ["dummy value"], 20

 "suggestions": ["placeholder value", "sample value"] 21

 }, 22

 { 23

 "key": "sanity_check", 24

 "search_terms": ["sanity check"], 25

 "suggestions": ["quick check", "confidence check", "coherence check"] 26

 } 27

] 28

 29

#function to return the list of suggestions associated with a given key 30

def suggestions(key): 31

 32

 for dictionary in GUIDELINES: 33

 if key == dictionary['key']: 34

 return (dictionary['suggestions']) 35

 return [] 36

 37

#function to add single quotes to every item in a string list 38

def add_quotes(raw_list): 39

 40

 final = [] 41

 for elem in raw_list: 42

 result = "'"+ elem + "'" 43

 final.append(result) 44

 return final 45

 46

#function to convert given key from snake_case to dash-case 47

def dash_case(key): 48

 result = key.replace("_","-") 49

 return result 50

 51

 52

def notice(key,index,match): 53

 54

 #loop through the json, search for given key to find specific dictionary 55

 for dictionary in GUIDELINES: 56

 if key == dictionary['key']: 57

 #slice given match string using given index 58

 string = match[index:] 59

 60

 #look for sliced match string with search terms in dictionary 61

 for string in dictionary['search_terms']: 62

 63

 suggestions = "" 64

 delimiter = " or " 65

 suggestions_final = [] 66

 mod_key = "" 67

 68

 #create list of suggestions in dictionary under 'suggestions' key 69

 suggestions_list = dictionary['suggestions'] 70

 #add single quotes to every suggestion 71

 suggestions_final = add_quotes(suggestions_list) 72

 #add single quotes to the match string 73

 final_match = "'{}'".format(match) 74

 75

 #separate the suggestions using "or" 76

 temp = list(map(str, suggestions_final)) 77

 suggestions = delimiter.join(temp) 78

 79

 #convert the given key from snake case to dash-case 80

 mod_key = dash_case(key) 81

 82

 83

 notice = "<{}> Consider replacing {} with {}. Reference https://www.inclusive-

styleguide.com/{} for details.".format(index,final_match,suggestions,mod_key)

84

 85

 return notice 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

Candidate's Tests

 101

 102

 103

 104

import unittest 1

from solution import notice 2

class Test(unittest.TestCase): 3

 def test_notice_should_return_the_notice(self): 4

 self.assertEqual(notice("man_hours",8,"woman hours"), "<8> Consider replacing 'woman

hours' with 'person hours' or 'engineer hours'. Reference https://www.inclusive-

styleguide.com/man-hours for details.")

5

 Assessment Code Solution

 Scoring

100%

5 / 5 Tests (90 Attempts)

Timing

5 h, 19 m, 9 s Active Time

731 ms Run Time

Instructions

#3: Inclusive Styleguide: Part 3

At Code2040 we work with many companies who are conciously trying to move toward using more inclusive language. In

our opinion, there is no more important place to start than the language we use in our codebases and to describe our

code. We believe this is a crucial step toward increasing diversity and inclusion in technical spaces. This multipart

challenge will be to build a basic delinter built around inclusive language guidelines.

As an example, here (https://developers.google.com/style/inclusive-documentation) is what google's developer

documentation style guide has to say about inclusive language, and here

(https://mobile.twitter.com/TwitterEng/status/1278733305190342656) is a post from Twitter with some of their internal

language guidelines, which we have drawn on as an example for this exercise.

For this task imagine, you have received the following JSON from your team with some style guidelines:

GUIDELINES = [

 {

 "key": "you_guys",

 "search_terms": ["you guys", "u guys", "uu guys"],

 "suggestions": ["you", "you all", "y'all"]

 },

 {

 "key": "man_hours",

 "search_terms": ["man hours", "woman hours"],

 "suggestions": ["person hours", "engineer hours"]

 },

 {

 "key": "grandfathered",

 "search_terms": ["grandfathered"],

 "suggestions": ["legacy status"]

 },

 {

 "key": "dummy_value",

 "search_terms": ["dummy value"],

 "suggestions": ["placeholder value", "sample value"]

 },

 {

Background

https://developers.google.com/style/inclusive-documentation
https://mobile.twitter.com/TwitterEng/status/1278733305190342656

 "key": "sanity_check",

 "search_terms": ["sanity check"],

 "suggestions": ["quick check", "confidence check", "coherence check"]

 }

]

Your final task is to write the delinting function that provides suggestions about using inclusive language.

Tips

Part 3 is more difficult than the previous two parts. There are edge cases to acccount for and various functions and

concepts from the previous two parts to integrate. It's worth noting that completing the first two parts and writing a short

note in the upcoming Part 4 is enough to pass this entire assessment. You can even skip Part 3 and pass the

assessment, but we encourage you to go ahead and try to get the highest score you can get. Also remember partial credit

is given on all tasks -- each edge case you solve and test case you pass will increase your score. WE HAVE FULL FAITH

IN YOUR ABILITY TO ACE IT!

For the purposes of this task, here's what you need to support:

Partial matches should not trigger a notice (e.g. bayou guys should not trigger the you_guys delinter rule)

There's a 'gotcha' special case to the rule above to watch out for. If you aren't careful you guys might match both

the you guys and the u guys search term.

Matches should be case insensitive

Use the notice function from Part 2 to output a notice each time you find non-inclusive language

Each notice will include the index of the first character of the non-inclusive language within the text

Multiple notices should be displayed in ascending order by index

If multiple notices are needed connect them with a new line character \n

If no notices should be displayed simply return an empty string ""

For an extra challenge, build your function so that if more guidelines were added to the JSON it would continue to

work without you having to change your code

{

"method": "delinter",

"args": {

"text": {"type": "String", "desc": "the text to delint"}

 },

"returns": {"type": "String", "desc": "The notice(s) generated by the delinter"},

"examples": [

 {"args": ["Could you guys sanity check my method?"], "returns": "<6> Consider replacing 'you

guys' with 'you' or 'you all' or 'y'all'. Reference https://www.inclusive-styleguide.com/you-

guys for details.\\n<15> Consider replacing 'sanity check' with 'quick check' or 'confidence

check' or 'coherence check'. Reference https://www.inclusive-styleguide.com/sanity-check for

details."},

Part 3: The Delinter

Speci�cation

Solution Code Python

 {"args": ["I've inserted a dummy value in the block below."], "returns": "<16> Consider

replacing 'dummy value' with 'placeholder value' or 'sample value'. Reference

https://www.inclusive-styleguide.com/dummy-value for details."},

 {"args": ["This feature is estimated to require 600 engineer hours."], "returns": ""}

]

}

 1

import re 2

GUIDELINES = [3

 { 4

 "key": "you_guys", 5

 "search_terms": ["you guys", "u guys", "uu guys"], 6

 "suggestions": ["you", "you all", "y'all"] 7

 }, 8

 { 9

 "key": "man_hours", 10

 "search_terms": ["man hours", "woman hours"], 11

 "suggestions": ["person hours", "engineer hours"] 12

 }, 13

 { 14

 "key": "grandfathered", 15

 "search_terms": ["grandfathered"], 16

 "suggestions": ["legacy status"] 17

 }, 18

 { 19

 "key": "dummy_value", 20

 "search_terms": ["dummy value"], 21

 "suggestions": ["placeholder value", "sample value"] 22

 }, 23

 { 24

 "key": "sanity_check", 25

 "search_terms": ["sanity check"], 26

 "suggestions": ["quick check", "confidence check", "coherence check"] 27

 } 28

] 29

 30

#function to return the list of suggestions associated with a given key 31

def suggestions(key): 32

 33

 for dictionary in GUIDELINES: 34

 if key == dictionary['key']: 35

 return (dictionary['suggestions']) 36

 return [] 37

 38

 39

 40

#function to add single quotes to every item in a string list 41

def add_quotes(raw_list): 42

 43

 final = [] 44

 for elem in raw_list: 45

 result = "'"+ elem + "'" 46

 final.append(result) 47

 return final 48

 49

#function to convert given key from snake_case to dash-case 50

def dash_case(key): 51

 result = key.replace("_","-") 52

 return result 53

 54

 55

 56

 57

 58

def notice_mod(match_list, word_start_index, original_text): 59

 60

 for word in match_list: 61

 for number in word_start_index: 62

 mod_index = number 63

 64

 #loop through the json, search for given key to find specific dictionary 65

 for dictionary in GUIDELINES: 66

 67

 for elem in dictionary['search_terms']: 68

 if word in dictionary['search_terms']: 69

 70

 71

 suggestions = "" 72

 delimiter = " or " 73

 suggestions_final = [] 74

 mod_key = "" 75

 76

 #store list of suggestions in dictionary under 'suggestions' key 77

 suggestions_list = dictionary['suggestions'] 78

 #add single quotes to every suggestion 79

 suggestions_final = add_quotes(suggestions_list) 80

 81

 #add single quotes to the match string 82

 final_match = "'{}'".format(original_text[mod_index: mod_index + len(word)]) 83

 84

 #separate the suggestions using "or" 85

 temp = list(map(str, suggestions_final)) 86

 suggestions = delimiter.join(temp) 87

 88

 #convert the given key from snake case to dash-case 89

 mod_key = dash_case(dictionary['key']) 90

 91

 notice = "<{}> Consider replacing {} with {}. Reference https://www.inclusive-

styleguide.com/{} for details.".format(mod_index, final_match, suggestions, mod_key)

92

 93

 return notice 94

 95

 96

def delinter(text): 97

 98

 original_text = text 99

 100

 lower_text = text.lower() 101

 102

 103

 search_list = [] 104

 non_inclusive_list = [] 105

 non_inclusive_index = [] 106

 result = [] 107

 notice ="" 108

 #Loop through all the dictionaries 109

 for dictionary in GUIDELINES : 110

 111

 #make a combined list of all the search terms to look for in the string 112

 for search_thing in dictionary['search_terms']: 113

 search_list.append(search_thing) 114

 115

 #check if any search term in search_list exists in the text string 116

 for elem in search_list: 117

 118

 #use regex to find exact match 119

 match = re.search(r'\b' + re.escape(elem) + r'\b', lower_text) 120

 121

 if match: 122

 non_inclusive_index.append(lower_text.index(elem)) 123

 non_inclusive_list.append(elem) 124

 125

 result.append(notice_mod(non_inclusive_list, non_inclusive_index,

original_text))

126

 127

 delimiter = "\n" 128

 temp = list(map(str, result)) 129

 130

 #separate the suggestions using "or" 131

 result = delimiter.join(temp) 132

 133

 return result 134

 135

 136

 137

 138

 139

 140

 141

 142

 143

Candidate's Tests

 144

 145

 146

 147

 148

 149

 150

 151

 152

 153

 154

 155

 156

 157

 158

 159

 160

import unittest 1

from solution import delinter 2

class Test(unittest.TestCase): 3

 def test_delinter_should_return_the_notice(self): 4

 self.assertEqual(delinter("Grandfathered data schema is supported but only because it is

grandfathered."), "<0> Consider replacing 'Grandfathered' with 'legacy status'. Reference

https://www.inclusive-styleguide.com/grandfathered for details.")

5

 Assessment Quiz Solution

 Scoring

100%

1 / 1 Questions

Timing

18 m, 14 s Active Time

Instructions

Solution Answers

#4: Inclusive Styleguide: Part 4

A Note to a Team Member

Powered by www.qualified.io © 2025

0 out of 1 point

1. Now that you've finished coding, please take no more than ten minutes to write a brief description of your approach to

the problem and your thoughts on how the functionality could be further extended. Imagine you are writing an informal

note to another team member who works alongside you maintaining this codebase. Use whatever format suits your

communication style best. Bullet point lists or loose notes are more than fine. We don't care about perfect spelling or

syntax any more than your team member in real life would care--we just want you to talk abour your code in your own

voice and help us to better understand it.

Here are some questions you may want to address:

What design decisions did you make?

What assumptions did you make?

What do you think could be improved, refactored, or simplified?

What other ideas or features would be useful to add?

Which areas might you ask your team member to help you on?

Do you think the test coverage could be extended?

Could you improve clarity with more comments or better variable names?

Do you think your work on this coding exercise reflects your current technical skills well?

-My approach was to break down the problem into smaller tasks based on the tips given

I started by simplytrying to print out a notice given a single match term

I then moved on to other tasks, such as making it case insensitive, and handling multiple matches, one-by-

one

I created a "search_list" to store all the search terms from all the dictionaries in the JSON

I then iterated through that list and checked each element against the input text string

I created a regular expression with word boundaries to avoid a partial match for example with ("you guys")

and ("u guys")

I created extra functions to add quotes to the suggestions and to convert the match from snake_case to

dash-case

Resulting codeis too bulky, I think it needs to be optimized. For example, the extra methods may not have

been necessay

Too many nested loops, it proved to be challenging because I was frequently getting confused by them

I also think some of the names may be confusing, but I tried my best to include some commments

I think I took too long to complete this challenge because I am not very familiar with the syntax, I have the

right idea when it comes to solving the problem, but I lack some of the tools that may make it easier for me to

solve it

• •

https://www.qualified.io/

